B \Performance

IN ACTION

BUILDING FAST WEB PAGES

Jeremy L. Wagner

Ethan Marcotte

SAMPLE CHAPTER

/ll MANNING

Web Performance in Action

by Jeremy L. Wagner

Chapter 1

Copyright 2017 Manning Publications

brief contents

© 0 3 O Ot = 0 N

—_
N = O

Understanding web performance 1
Using assessment tools 22

Optimizing CSS 51

Understanding critical CSS 83

Making images responsive 102

Going further with images 130

Faster fonts 164

Keeping JavaScript lean and fast 196
Boosting performance with service workers 223
Fine-tuning asset delivery 242

Looking to the future with HTTP/2 274
Automating optimization with gulp 303

iii

Understanding
web performance

This chapter covers

= Why web performance matters
= How web browsers talk to web servers

= How poorly performing websites can be detrimental to
the user experience

= How to use basic web optimization techniques

You’ve probably heard about performance as it relates to websites, but what is it
and why should you and I care about it? Web performance refers primarily to the
speed at which a website loads. This is important because shorter load times
improve the user experience for your site on all internet connections. Because this
improves the user experience, the user is more likely to see what your website has
to offer. This helps you achieve goals as simple as getting more users to visit and
read your website’s content, or as lofty as getting users to take action. Slow websites
test users’ patience and might result in them abandoning your website before they
ever see what it has to offer.

1.1

111

CHAPTER 1 Understanding web performance

If your website is a major source of revenue, it literally pays to take stock of your
site’s performance. If you have an e-commerce site or a content portal that depends
on advertising revenue, a slow site affects your bottom line.

In this chapter, you’ll learn the importance of web performance, basic performance-
boosting techniques, and ways to apply them in order to optimize a client’s single-page
website.

Understanding web performance

You may be a developer who has heard of web performance, but you don’t know a lot
about it. Maybe you’ve used a few techniques for quick wins, or you may already be
well versed in the subject, and picked up this book to discover new techniques you can
use to further tune your own websites.

Don’t worry! Whether you have little experience in this arena or fancy yourself
somewhat of an expert on the subject, the goal of this book is to help you better
understand web performance, the methods used to improve the performance of a
website, and the ways to apply these methods to your own website.

Before we can talk about the specifics of web performance, however, it’s important
to understand the problem we’re trying to solve.

Web performance and the user experience

High-performing websites improve the user experience. By making sites faster, you
improve the user experience by speeding up the delivery of content. Moreover, when
your site is faster, users are more likely to care about what’s on it. Not one user cares
about the content of a site that doesn’t load quickly.

Slow websites also have a measurable effect on user engagement. On e-commerce
sites in particular, nearly half of users expect a website to load within 2 seconds. And 40%
of users will exit if it takes more than 3 seconds to load. A 1-second delay in page
response can mean a 7% reduction in users taking action (https://blog.kissmetrics
.com/loading-time). This means not only a loss of traffic, but a loss of revenue.

In addition, the performance of your website impacts not only your users, but also
your website’s position in Google search results. As early as 2010, Google indicated
that page speed is a factor in ranking websites in its search results. Though the rele-
vance of your site’s content is still the most important factor in your site’s search rank-
ing, page speed does play a role.

Let’s take the search rankings for Legendary Tones, a relatively popular blog about
guitars and guitar accessories that receives about 20,000 unique visitors a month. This
site receives much of its traffic from organic search results, and has well-written, rele-
vant content. Using Google Analytics, you can get data on the average speed of all
pages and correlate them to their average rankings. Figure 1.1 shows the graphed
findings for a month in 2015.

Search rankings remain stable, but when crawl times start straying beyond a
second, the ranking slips. It pays to take performance seriously. If you’re running a

https://blog.kissmetrics.com/loading-time
https://blog.kissmetrics.com/loading-time

112

Understanding web performance 3

12 — 11.5
10.8 10.9 10.75
10
8 —
X
C
o
o 6
jo)]
©
o
4
2 —
Figure 1.1 The average rankings of all
1 1 1 pages on the Legendary Tones website
0.7-0.8 s 0.8-09s 0.9-1.0s 1.0-13s according to its page download time by
Crawl time Google. Lower values are better.

content-driven site such as a blog, your organic search rankings are the greatest
source of traffic you have. Reducing your website’s load time is one part of a formula
for success.

Now that you know why performance is important, we can begin to talk about how
web servers communicate and how this process can lend itself to making websites slower.

How web browsers talk to web servers

To know why web optimization is necessary, you need to know where the problem lies,
and that’s in the basic nature of the way web browsers and web servers communicate.
Figure 1.2 illustrates an overview of this concept.

When it’s said that web performance focuses on making websites load faster, the
primary focus is on reducing load time. The most simple interpretation of load time is
the time between the instant a user requests a website and the instant it appears on
the user’s screen. The mechanism driving this is the time it takes for the server’s
response to reach the user after the user requests content.

User Web server
1. User sends request for example.com

2. User waits for a response

0

3. User downloads page from example.com

Figure 1.2 A user’s request for example.com. The user sends the request for the web
page via a browser and then must wait for the server to gather its response and send it.
After the server sends the response, the user receives the web page in the browser.

http:example.com
http:example.com
http:example.com

CHAPTER 1 Understanding web performance

Think of this process as being similar to walking into a coffee shop and asking for a
cup of dark roast. After a bit of a wait, you get a cup of coffee. At its most basic level,
talking with a web server isn’t much different: you request something and eventually
receive what you requested.

When a browser fetches a web page, it talks to a server in a language called Hyper-
text Transfer Protocol, commonly known as HTTP. The browser makes an HTTP request,
and the web server replies with an HTTP response, which consists of a status code and
the requested content.

In figure 1.3, you see a request being made to exam- yo.p Resource Protocol
ple.com (an actual website, believe it or not). The verb GET)\ /.)\
tells the server to locate /index.html. Because a few ver-

. . . GET /index.html HTTP/1.1
sions of HTTP are in use, the server wants to know which yog¢. example.com

version of the protocol is being referenced (which in this w—/
case is HTTP/1.1). In the last step, the request is clarified Server
with the host of the resource.

After making the request, you receive a response code Figure 1.3 The anatomy
of an HTTP request to

of 200 OK, which assures you that the resource you've
example.com.

requested exists, along with a response containing the con-
tents of /index.html. The content of /index.html is then downloaded and inter-
preted by the web browser.

All of these steps incur what is called latency, the amount of time spent waiting for a
request to reach the web server, the amount of time for the web server to collect and
send its response, and the amount of time for the web browser to download the
response. One of the primary aims of improving performance is to reduce latency, the
amount of time it takes for a response to arrive in full. When latency occurs across a
single request as in the example of example.com, it’s trivial. But loading practically
any website involves more than a single request for content. As these requests increase
in volume, the user experience becomes increasingly vulnerable to slower load times.

In communication between HTTP/1 servers and browsers, a phenomenon known
as head-of-line blocking can occur. This occurs because the browser limits the number of
requests it will make at a single time (typically, six). When one or more of these
requests are processing and others have finished, new requests for content are
blocked until the remaining request has been fulfilled. This behavior increases page-
load time.

HTTP/2, a new version of HTTP, largely solves the head-of-line blocking problem
and enjoys wide support among browsers. The responsibility is on servers to imple-
ment the protocol, however. As of July 2016, only approximately 8.5% of all web serv-
ers are using HTTP/2 (http://w3techs.com/technologies/details/ce-http2/all/all).
Because HTTP/2 has the ability to fall back to HTTP/1 for clients that don’t support it,
clients that understand only HTTP/1 are still susceptible to the problems of the older
protocol. Moreover, any browser communicating with an HTTP/1 server will encoun-
ter the same issues, regardless of its ability to support HTTP/2.

http://example.com/
http://example.com/
example.com
http://w3techs.com/technologies/details/ce-http2/all/all
http:example.com
http:example.com

113

Understanding web performance 5

Because we live in a complex world, we need to be able to accommodate both ver-
sions of the protocol for the time being. Going forward, we’ll discuss ways to optimize
sites for HTTP/1, but also call out practices that may be counterintuitive on HTTP/2.
To learn more about HTTP/2, as well as how to conditionally implement the best
workflows for each version of the protocol, check out chapter 11.

The next section covers how websites load content and how this behavior can lend
itself to performance problems with websites.

How web pages load

In a boring world, all websites would be like example.com: one page with no images
or JavaScript, and with minimal styling. But in reality, websites are often more com-
plex than a single HTML file. Websites are an assortment of visual media that provides
accompaniments to content, style sheets that apply design to bland markup, and
JavaScript that turns static pages into applications capable of complex behaviors. It
sounds neat, but these pieces come at a cost. Figure 1.4 shows a user’s request to get
index.html from a web server.

User Web page
Assets

GET /index.html
</> GET /styles.css
‘ ’ {}:
index.html

styles.css

GET /jquery.js
function ()

jquery.js

GET /scripts.js
function()

scripts.js

GET /logo.png .
Ly

Figure 1.4 Steps to get index.html from a web server logo.png

example.com

1.2

1.2.1

CHAPTER 1 Understanding web performance

After the browser downloads index.html, it discovers a <link> tag to a style sheet, a
couple of <script> tags linking to JavaScript files, and an tag referring to an
image. When the browser discovers these references to other files, it makes new HTTP
requests on the user’s behalf to retrieve them. What started off as one request for a
web page has now turned into five requests. Although five requests aren’t much, a typ-
ical website can easily have ten times that many, or a complex one could have even a
hundred or so. As these requests increase, so too does the amount of data down-
loaded. As requests and the data accompanying them increase, so does the amount of
time it takes a page to load.

Therein lies the challenge of enhancing website performance: balancing the
requirements of modern websites with the importance of serving them as fast as possi-
ble. You need to know performance-enhancement techniques so you can keep com-
plex web experiences from encroaching on the most valuable part of the user
experience: the ability to access content.

Getting up and running

Performance problems often signify issues in front end architecture. Although some
issues can originate from a poorly configured application back end, those issues are
specific to those application platforms (for example, PHP or .NET) and are admittedly
outside the scope of this book. In this section, you’ll investigate how to fix common
performance problems through an interactive exercise that enhances the perfor-
mance of a client’s single-page website.

This client, Coyle Appliance Repair, is an appliance repair company from the
Upper Midwest. The owners have approached you and asked whether you can make
their site faster. You’ll help them out by employing techniques that will decrease the
load time of the website by 70% by the end of this chapter.

In this section, you'll get the client’s website running on your computer. To do this,
you’ll use Node.js and Git. You'll also use Google Chrome to simulate a network con-
nection to a remote server so that you can measure the results of your work in a mean-
ingful way.

Installing Node.js and Git

Node.js (informally called Node) is a JavaScript runtime that allows JavaScript to be
used outside the browser. It can be used for numerous things, but in this case you’ll
use a small Node program that runs as a local web server for running the client’s web-
site. You’ll also use a couple of Node modules to achieve some optimization goals.

You’ll use Node instead of a traditional web server (such as Apache) for simplicity.
With Node, you can spin up a local web server quickly. It allows you to pull down exer-
cises in this book without having to install or configure a web server. Using Node, you
can pull down and run the example websites in this book in a matter of minutes, even
if you have little or no experience with Node.

122

Getting up and running 7

To install Node, go to http://nodejs.org. In the Download section, find the
installer for your operating system. When running the installer, choose the standard
installation option to ensure that the Node Package Manager (npm) is installed. npm
provides access to the vast Node package ecosystem available on http://npmjs.com,
and is required to complete the client website exercise.

You also need to install Git to pull down the client website in this chapter and
the example websites later in this book. By using Git, you’ll be able to grab code in
this book whenever you need it from a centralized location. If you're familiar with
Git, that’s great, but previous experience is unnecessary for following along in this
book’s exercises. To download Git, head over to https://git-scm.com/downloads,
choose the installer for your system, and run it. After you've installed Node and
Git, continue on!

Downloading and running the client’s website

You can download the client’s website for this chapter from GitHub. To do this, down-
load the repository into a folder of your choosing from the command line:

git clone https://github.com/malchata/chl-coyle.git
cd chl-coyle

This downloads the exercise files from the repository on GitHub into the current
working directory on the command line. If you don’t have Git installed, or you don’t
feel like cloning the repository, you can download the exercise as a zip file at
https://github.com/webopt/chl-coyle and extract it where you like.

After the exercise has been downloaded, you’ll need to use npm to download the
packages necessary for the web server to run. Run the following command in the same
folder to download and install the needed packages:

npm install express

This command installs the Express framework to your current directory, which you
can use to create a simple web server that serves static files for this and many other
examples that you’ll run locally on your computer. You don’t need to know Express or
how it works in order to follow along. None of the examples in this book makes heavy
use of this framework beyond serving static files from your computer.

Permissions issues on UNIX-like operating systems

npm usually installs packages without a problem on most operating systems, but if
you run into problems on a Mac or any other UNIX-like environment, running the npm
command with sudo should clear up any permissions issues. In Windows, opening a
new command line as an administrator should help.

http://nodejs.org
http://npmjs.com
https://git-scm.com/downloads
https://github.com/webopt/ch1-coyle
https://github.com/malchata/ch1-coyle.git

123

CHAPTER 1 Understanding web performance
Depending on your connection speed, the installation could take 10 or more seconds.
After it finishes, you can run the following command to start the local web server:
node http.js

When you run this command, a local web server running the client website will be
accessible on your computer at http://localhost:8080 and will appear as shown in fig-
ure 1.5.

651-555-5555

Serving the Twin Cities and western Wisconsin since 1982

FULL SERVICE RESTAURANT AND COMMERCIAL KITCHEN REPAIR. WE
SERVICE ALL COOKING, FOOD PREP, WAREWASH/DISHROOM, AND
REFRIGERATION EQUIPMENT.

Figure 1.5 The client’s

SCHEDULE AN APPOINTMENT website in the web
browser running from
Coyle Appliancs Repair - 15 W Kallog Bivd - Saint Paul, MN 55102 - 5 - Call 24 Hours A Day your local machine

If you have another service running on port 8080, you can open the http.js file in your
text editor and change the port number on line 8. To stop the server from running,
press Ctrl-C.

Simulating a network connection

Because you’re running the client’s website on a local machine, no latency occurs
when you make requests to localhost. Without latency, it’s difficult to measure any
gains in performance, because no network bottleneck exists in this scenario.

One way to get around this is to deploy the website to a remote web server as you
complete the steps, but this can be convoluted for our purposes. A better way is to use
Google Chrome Developer Tools.

To get started, open Chrome. To open the Developer Tools on a Windows
machine, press F12. On a Mac, press Command-Alt-I. The Developer Tools should
appear within the Chrome window. Alternately, you can choose View > Developer >
Developer Tools. When the Tools menu appears, click the Network tab that appears at
the top of the window, as shown in figure 1.6.

http://localhost:8080

1.3

Auditing the client’s website 9

Network tab Throttling menu
[X N] Developer Tools - https:{/www.google.com/_/chrome/newtab-serviceworker.js
= 0 Elements Layers Console Sources Mefwork Timeline Profiles Resoyrces Security Audits
® O WY Vew IE == Preserve log @ Disable cache = No throttling v

Hide data URLs 5!/ XHR)5 CSS Img Media Font Doc WS Other

Figure 1.6 The location of the Network tab in the Google Chrome Developer Tools window. You can
simulate internet connection speeds by using the throttling menu.

Near the top and to the right of the Disable cache check box is a drop-down menu
labeled No throttling. This is the network throttling menu. When you click it, a list of
options appears. These options allow you to simulate conditions that can be useful for
performance testing. For now, select the Regular 3G profile, which simulates a slower
mobile network connection.

Don’t forget!

When you’'re finished optimizing the client’s website, make sure you switch this drop-
down menu back to No throttling. If you forget, all of your web browsing will be throt-
tled to the selected setting while the Developer Tools are open.

With your client’s website running and your network throttling set up, you're ready to
audit the client’s website and create a waterfall chart with Chrome’s Developer Tools.

Auditing the client’s website

To optimize a website, you have to be able to identify areas of improvement. This
means analyzing the number of requests on a page, the amount of data the page con-
tains, and the amount of time it takes for the page to load. This is where Chrome’s
network tools come in handy. In this section, you’ll learn how to create waterfall
charts with these tools and how to quantify aspects of your client’s website so that you
have a starting point for optimizing.

Chrome’s network tools are accessible in the same place where you chose a net-
work throttling profile, which is under the Network tab. To profile a site, the Record
button in this pane must enabled, as shown in figure 1.7.

Select to

Record disable cache

button
[-K‘ D Elements Layers Console Sources Network \Timeline Profiles Re:
® O WY Vew IE == Preserve log @ Disable cache = No throttling
Hide data URLs (2} XHR JS CSS Img Media |

Figure 1.7 The Record button must be in the enabled state (red) before you can generate a waterfall

chart of assets. The Disable Cache check box should also be selected so that no caching is done when
you reload the page to measure the results of your work.

10

CHAPTER 1 Understanding web performance

The first thing you’ll want to do in the Network tab is ensure that the Disable cache
check box is selected. When a website is first visited, none of the assets are cached, and
this is the scenario that you want to be able to replicate. Otherwise, the site’s assets will
be served from the cache. Although a site loads faster when cached, it’s best to assume
that your average user won’t have your site assets cached. For a small site such as this,
this is likely.

In the Network tab, make sure the Record button in the upper-left corner is in the
enabled state (see figure 1.7). It’s red when enabled. If you haven’t already, navigate
to the client website running on your computer at http://localhost:8080 (or reload)
to generate the waterfall chart. After the page is done loading, you can see the results.
Figure 1.8 shows a waterfall chart for your client’s website.

The waterfall chart generated for your client’s site shows eight requests. Although
this isn’t an obscene number of requests, 536 KB of data is spread across them, and
that’s a significant amount for a small site like this. Because of the amount of data, the
site loads in about 6.15 seconds on the Regular 3G throttling profile, which means
that this site will take even longer to load on slower mobile networks than some users
would like.

Because this is a responsive website, it’s important to know that differences in load
times will occur among devices. Responsive websites display differently at different
screen widths because of mechanisms called media queries that are part of the site’s CSS.

Site assets Asset-load time Waterfall chart

[X X] Developer Tools 4 http:/flocalhost:8080/
[w ﬂ Elements Layers Console Sources Metwork \Timeline Profiles Resources Security Audits »

® O /W T View IE Preserve log @ Disable dache Regular 3G (750 kb/ ¥

Hide data URLs (1)} XHR Js Img Media Font Doc WS Manifest Other

Name Method Status Protocol Type Initiator Size Time Timeline - Start Time 4005 6005 A
|| localhost GET 200 bhup/l.1 document Other 4.8kB 162ms ||
styles.css CET 200 http/1.1 stylesheet (index):7 18.5KB 567 ms =
| iquery.js GET 200 hup/l.1 script index):144 253KB 5.84s [i " |
_| behaviors.js GET 200 hep/l.1l script (index):145 3.4KB 255ms
= bg@2x.jpg GET 200 httpfl.1 jpeg (index):144 144KB 4.41s
«| logo@2x.png GET 200 htp/l.l png index):144 69.1KB 2.82s I
wal brothers@2x.jpg GET 200 httpfl.1 jpeg (index):144 33.3KB 1.63s]
= states@2x.png GET 200 http/1.1 png (index):144 9.6KB 630ms (]

8 requests | 536 KB transferred | Finish: 6.10s | DOMContentLoaded: 6.155s | Load: 6.155

/

Page-load statistics Asset-load start Asset-load end

Figure 1.8 A waterfall chart generated for your client’s website. At the top, you can see the request
for index.html, followed by the site’s CSS, JavaScript, and images. Each bar represents a request for
a site asset. The bars are positioned on the x-axis according to the time they began downloading on
the left, and the time they have finished downloading on the right. The length of a bar corresponds
to the amount of time it takes for the asset to be requested and downloaded by the web browser.

http://localhost:8080

14

Optimizing the client’s website 11

These are covered in more detail in chapter 3, but the important point to know is that
this site renders differently across three types of devices: desktop computers, tablets,
and mobile phones.

More than that, screens across these devices vary not only in size, but in capabilities
such as display density (the number of pixels per inch on the screen). If you've ever
used an Apple product, for example, you've seen a high DPI (dots per inch) display at
work. In order to retain high visual quality on these screens, a higher-resolution set of
images is needed than for standard DPI displays. More information on these screen
types and methods for serving images specific to them can be found in chapter 5.

Don’t worry if you don’t understand all this talk of CSS media queries and screen
sizes right now. The point is that the client website’s load time can differ not only
because of the quality of its network connection, but also because of the characteris-
tics of the device itself. Depending on the site visited, devices with higher display den-
sities may download more data than devices with standard displays. Table 1.1 lists the
amount of data transferred and website load times according to the device’s type and
display density.

Table 1.1 A comparison of page-load times across various devices. Results vary depending on the
amount of data and the display density of the device.

Device type Display density Page weight Load time
Mobile (phone and tablet) Standard 378 KB 4.46 seconds
Mobile (phone and tablet) High 526 KB 6.01 seconds
Desktop Standard 383 KB 4.51 seconds
Desktop High 536 KB 6.15 seconds

As you proceed in performance-tuning the client’s website, you’ll keep tabs on load
times and the amount of data you reduce for each scenario as it pertains to the Regu-
lar 3G throttling profile you’ve chosen. Let’s get to work!

Optimizing the client’s website

When improving the performance of a website, the goal is simple: reduce the amount
of data transferred. By pursuing this, you’ll decrease the amount of time that the site
loads on any device. The best part of this pursuit is that it benefits the user on both
HTTP/1 and HTTP/2 servers. If there’s one piece of advice that always wins out, it’s
this: fewer bytes transferred means faster load times.

Reducing requests can help, and some performance-boosting techniques that fol-
low in this book will encourage you to do this, but be aware that this approach works
best for an HTTP/1 workflow. This client’s site is already light on requests and won’t
benefit much from it.

In these optimization efforts, you’ll start by minifying the assets of the site, which
includes the CSS, the JavaScript, and the HTML itself. Then you’ll move on to optimize

12

14.1

CHAPTER 1 Understanding web performance

Want to skip ahead?

If you get stuck at any point while working on the client’s website (or you're curious to
see how it all comes together), you can skip to the final, optimized code by using the
git command. Type git checkout -f optimized inthe root folder of the web project,
and the final, optimized site will be downloaded to your computer. Be aware that per-
forming this action overwrites any work you’ve done locally, so back up your work!

the images on the site without compromising their visual integrity. Finally, you’ll finish
by employing compression on the server for text assets.

Minifying assets

Minificationis a process by which all whitespace and unnecessary characters are stripped
from a text-based asset without affecting the way that asset functions. Figure 1.9
illustrates the basic idea of minification as it applies to CSS.

Many human-readable files such as CSS and JavaScript contain whitespace and
characters that are inserted by developers during development. We use line breaks
and indentation in our CSS and JavaScript to make them easier to read, as well as
using comments in source code for documentation purposes.

Web browsers need no such help when reading these files. The fewer unnecessary
characters that are in these files, the faster the web browser will download and parse
them.

TIP When minifying files, it’s important to preserve the original, unminified
source. Chances are near certain that you’ll have to edit files in a web project
again after you minify them. Chapter 12 will help you in this endeavor.

Unminified: 98 bytes

.logo

{
width: 282px;
height: 186px;
position: absolute;
top: 0;
left: -54px;
z-index: 11;

.logo{width:282px;height:186px;position:absolute;top:0;left:-54px;z-index:11}

Minified: 77 bytes

Figure 1.9 Minification of a CSS rule. In this example, a CSS rule is minified from 98 bytes
down to 77, which represents a 21% reduction. When this concept is applied to all text assets
on a site, the reductions can total many kilobytes.

Optimizing the client’s website 13

In this section, you’ll start by minifying the site’s CSS, then JavaScript, and finally the
HTML. Before you continue, you’ll download a couple of packages by using npm that
will allow you to minify files on the command line:

npm install -g minifier html-minify

This installation could take a minute or so. After the packages install, you’ll be ready
to minify the site’s assets. When you’re finished with this section, you’ll have reduced
the site’s total weight by 173 KB.

MINIFYING THE WEBSITE'S CSS

The site’s CSS is 18.2 KB. By minifying it, you could reduce the weight of the page a bit.
To minify the site’s CSS, you need to do two things: run the minifier program and then
update the HTML to point to the newly minified file. To minify the CSS, run this com-
mand inside the website’s css folder:

minify -o styles.min.css styles.css

This command’s syntax is simple. It specifies the output file (styles.min.css) with the
-o argument. After this argument, the input filename (styles.css) is specified. After the
command finishes, check the size of the output file, and you’ll notice that the mini-
fied file is 14% smaller, at 15.6 KB. Not a huge savings, but it’s a good start. Let’s
update the reference to this file in index.html by changing the <link> tag reference
from styles.css to styles.min.css, like so:

<link rel="stylesheet" type="text/css" href="css/styles.min.css">

Next, reload the client’s website in your web browser to ensure that the website’s styles
still work. You can verify that the minified styles are in place by checking the updated
waterfall graph and looking for a reference to styles.min.css. Your client website’s CSS
is now minified!

MINIFYING THE WEBSITE'S JAVASCRIPT

The website’s JavaScript has a much larger share of data than the CSS does. This site
uses two JavaScript files: jqueryjs (the jQuery library) and behaviors.js (the site’s
behaviors that are dependent on jQuery). These weigh in at 252.6 KB and 3.1 KB,
respectively. To minify these files, you run the minify command on them, as you did
for the site’s CSS:

minify -o jquery.min.js jquery.js
minify -o behaviors.min.js behaviors.js

After the js files are minified, check the size of the output files and compare them to
the unminified versions. You’ll see that behaviors.js has been reduced by 46% to 1.66
KB, and jquery.js has been reduced by 66% to 84.4 KB. This tremendous improvement
knocks off a large chunk of the site’s total weight (which you’ll measure and compare
at the end of this section).

http:jquery.js
http:behaviors.js
http:behaviors.js
http:behaviors.min.js
http:jquery.js
http:jquery.min.js
http:behaviors.js
http:jquery.js

14

CHAPTER 1 Understanding web performance

You need to update the references to jqueryjs and behaviors.js, to jquery.min.js
and behaviors.min.js, in index.html. Locate the <script> tags that reference these
files and change them to the following:

<script src="js/jquery.min.js"></scripts>
<script src="js/behaviors.min.js"></script>

Then reload the page and check the Network tab to see that the minified files are ref-
erenced. If they are, you’re ready to minify the last asset, which is the website’s HTML.

MINIFYING THE WEBSITE’S HTML
Although not as large as the savings you’ve realized by minifying the site’s JavaScript,
the site’s HTML is another asset that you can minify. Rather than using the minify
Node package (which is intended for use with CSS and JavaScript files), you’ll use the
htmlminify package instead.

Unintended consequences of minifying HTML

Minification of HTML usually goes off without a hitch, but you may notice that minor
shifts can occur to the layout. This is due to the influence of whitespace on CSS
display types such as inline and inline-block. If you indent your HTML, these
CSS display types could act a bit differently after the whitespace around them is
removed. Some tweaking of your CSS may be necessary if the effects are dramatic.
Also be aware of any properties or tags that treat whitespace literally, such as the
CSS white-space property or the HTML <pre> tag.

Before you minify the site’s HTML, you need to copy index.html in the site’s root
folder to a separate source file named index.src.html so you can preserve the original
for changes. After you copy this file, you can minify it with htmlminify, like so:

htmlminify -o index.html index.src.html

You’ll see that the minified file is 19% smaller than its original size—from 4.57 KB
to 3.71 KB. Not a huge savings, but it does squeeze a bit more toothpaste out of the
tube, so to speak, and for not much more effort.

With your site assets minified, you’ve managed to slim down your website by 173
KB. Because these assets are needed for the web page to work across all types of
devices, this is a consistent performance gain for users of any device. Figure 1.10 com-
pares load times before and after minification for all device types shown in table 1.1.

Through a modest effort, you were able to decrease load times by anywhere from 31%
to 41%! This is no small improvement, and more is yet to come. In the next section, you'll
further improve the yields on text assets via a serverside mechanism called server
compression.

http:behaviors.min.js
http:jquery.min.js
http:behaviors.js
http:jquery.js

14.2

Optimizing the client’s website 15

8s
. Before minification

After minification

Load times

]]]
Mobile Mobile Desktop Desktop
(high DPI) (high DPI)

Figure 1.10 Load times of the client’s website on the Regular 3G network throttling
profile before and after minification. Improvements range anywhere from 31% to 41%,
depending on the visitor’s device.

Using server compression

Surely you’ve been emailed compressed files. These files are often used in online com-
munications as a handy way to package multiple files into a single one. Aside from the
convenience of consolidation, compressing files can also reduce their size. Server
compression works on a similar principle with respect to reduction of file sizes, and
web browsers are able to accept and decompress compressed content on behalf of the
user. Figure 1.11 provides an overview of this concept.

1. User requests 2. Web server sends
compressed content compressed response

GET /index.html
Accept-Encoding: gzip, deflate

</> O

index.html

Content-Encoding: gzip

Figure 1.11 The process of server compression

16

CHAPTER 1 Understanding web performance

Server compression works as follows: A user requests a web page from a server. The
user’s request is accompanied by an Accept-Encoding header that tells the server the
compression formats the browser is capable of using. If the server is capable of encod-
ing the content as indicated in the Accept-Encoding header, it will reply with a Con-
tent-Encoding header that describes the compression method used along with the
compressed content.

This is useful because much of the content that’s downloaded from websites tends
to be text, which compresses well. A compression method called gzip has nearly universal
browser support, and is very effective in reducing the size of text assets. In this step of
optimizing your client’s website, you’ll configure your server to serve compressed
content. As a result of these efforts, you’ll reduce the weight of the page by an addi-
tional 70 KB and improve its load time by 18% to 32%, depending on the visitor’s device.
Before you do this, though, go to your command line and stop the web server by pressing
Ctrl-C. Then type the following command to install the compression module:

npm install compression

After the installation finishes, open http.js in your text editor and add the bold lines
that you see in this listing.

Listing 1.1 Configuring the Node HTTP server to use compression

var express = require ("express");
var compression = require("compression") ; Compression module is
var app = express(); imported into the script.

// Run static server

app.use (compression (),)i } Script hooks the compression
app.use (express.static(__dirname)) ; module into the web server.

app.listen(8080) ;

After you’'ve made these changes, restart the web server. Reload the page and view the
waterfall graph to see the results. Table 1.2 compares text assets before and after com-
pression.

Table 1.2 A comparison of text assets on the client’s website before and after the application of server
compression

Asset filename Size before Size after Reduction
index.html 4 KB 1.8 KB 55%
styles.min.css 15.9 KB 3.1 KB 80.5%
jquery.min.js 84.7 KB 30 KB 64.5%
behaviors.min.js 1.9 KB 1.1 KB 42.1%

Total: 106.5 KB 36 KB 66.2%

Optimizing the client’s website 17

Before compression

l:’ After compression

Load times

Mobile Mobile Desktop Desktop
(high DPI) (high DPI)

Figure 1.12 Load times of the client’s site on the Regular 3G throttling profile before
and after applying compression. Depending on the visitor’s device, load times improve
anywhere from 18% to 32%.

The reduction of file sizes is clearly significant. The size of all text assets prior to apply-
ing compression was 106.5 KB. After using compression, you were able to reduce this
by about 66%, to an even lower 36 KB! So what does this do for load times? Quite a bit.
Figure 1.12 compares load times across devices.

This simple step has significantly improved the site’s load time. It’s important to
note that different web servers require different steps to configure compression for
assets. The following listing shows how to enable compression for common asset
media types in the software’s httpd.conf configuration file.

Listing 1.2 Enabling server compression on Apache web servers

Checks if the mod_deflate
module is loaded. Compresses files that match
the provided content types.
<IfModule mod deflate.c>
AddOutputFilterByType DEFLATE text/html text/css text/javascript
</IfModule>

In Microsoft Internet Information Services (IIS), compression can be configured by
entering the admin panel via the inetmgr executable, going to a specific website, and
editing the compression settings through the utility’s GUI. No matter what kind of web
server you use, the benefit of compression is largely the same. Some allow more con-
figuration than others.

With compression applied and working on your client’s website, you can move on
to the final part of this optimization plan: optimizing images.

18

143

CHAPTER 1 Understanding web performance

Compression pro tip

Have you ever tried to zip a JPEG or an MP3 file? Not only does this provide no addi-
tional savings, but the final zip file may end up being larger. This is because those
types of files are already compressed when they’'re encoded. Compressing content
on the web is no different. Avoid compressing file types that already use compression
when they’re encoded, such as JPEG, PNG, and GIF images and WOFF and WOFF2
font files.

Optimizing images

Image compression has come a long way since the days of Photoshop’s Save for Web
dialog box. Today’s algorithms are so efficient at reducing the file size of full-color
images that the end result is usually indistinguishable from the source image. The sav-
ings in file size, however, can be significant. Figure 1.13 compares two images, before
and after optimization.

Unoptimized Optimized
(30.87 KB) (11.69 KB)

Figure 1.13 Image optimization in action on a PNG image. Optimizing images
in this manner uses a re-encoding technique that discards unnecessary data
from the image, but doesn’t noticeably impact the image’s visual quality.

If you can’t notice a difference between the two images, that’s the point. The idea
behind this type of optimization is to retain as much visual quality as possible from the
source, while discarding unnecessary data.

That’s not to say that this type of optimization can’t lead to undesirable results.
Any optimization can go too far, leading to a noticeable loss in quality. Chapter 6
delves into image optimization not only for PNG files, but for JPEG and SVG images as
well. The rule of thumb is to compare the result of any optimization to the original
source, and make sure that you’re satisfied with the results.

Many services can compress images for you, including some command-line and auto-
mated tools covered in chapters 6 and 12. For the sake of simplicity, though, you’ll go
with a web service named TinyPNG (http://tinypng.com), shown in figure 1.14.

Despite the name, this site compresses not only PNG images, but also JPEG images.
Depending on the visitor’s device, four images show in the desktop view, and only

http://tinypng.com

Optimizing the client’s website 19

o I -

= S demnicad

o D : dawnioad

LR TR dewnioad
=~

2
Vi

T 61% e

Shrink PNG files

Advanced lossy compression for PNG images that preserves full alpha transparency.

Figure 1.14 TinyPNG compressing the client website’s images and reporting a 61%
reduction of total size

three in the mobile views. The size of these images depends on the kind of screen
viewing them. High DPI screens (such as Retina screens on Apple devices) need the
larger set of images to provide the best visual experience, whereas standard DPI
screens can use the smaller set of images. The differences between these screens and
the ways to serve them based on a device’s capability are covered in chapter 5. At this
point, the goal is to take whatever images are in the img folder, use the TinyPNG ser-
vice to optimize them, and observe the gains.

To compress these images, upload them to the TinyPNG site, and the site will auto-
matically optimize them. When finished, download all of them and copy them to the
img folder of the website. When prompted, select the Overwrite option for any con-
flicts. Then reload the page and check the waterfall graph again in Chrome’s Devel-
oper Tools to see the difference these smaller images have made. Table 1.3 lists images
on the site before and after their optimization.

Table 1.3 A comparison of image sizes before and after their optimization using the TinyPNG web service

Asset filename Size before Size after Reduction
bg.png 56.6 KB 32.0 KB -43%
bg@2x.jpg 147.4 KB 29.4 KB -80%
brothers.jpg 11.9 KB 9.7 KB -18%
brothers@2x.jpg 33.8 KB 29.8 KB -12%
logo.png 31.6 KB 12.0 KB 62%
logo@2x.png 70.5 KB 25.2 KB -64%
states.png 4.9 KB 1.8 KB -63%
states@2x.png 9.6 KB 3.5 KB -63%

20

15

CHAPTER 1 Understanding web performance

4s -
. Before optimization
l:’ After optimization
3s [~
[}
Q
£
5 2s
[
o
|
1s
0s]]]
Mobile Mobile Desktop Desktop
(high DPI) (high DPI)

Figure 1.15 Load times of the client’s website on the Regular 3G network throttling
profile before and after optimizing images. Depending on the visitor’s device, load
times improve anywhere from 23% to 53%.

By the looks of it, all images benefit to a varying degree from this optimization—some
more than others, certainly. But the real question is, how does this impact page-load
time? Figure 1.15 compares load times before and after this image optimization effort.

Optimizing images has had a pronounced effect on your load times. Load times
for all devices have been reduced to less than 2 seconds, which is significant, especially
for 3G networks! With your work done, let’s take a look at the full impact of your
efforts.

Performing the final weigh-in

With your optimization efforts in the can, you can compare the amount of data trans-
ferred by the server before and after your efforts for each of the four scenarios in
table 1.4.

Table 1.4 A comparison of page weights for the client’s website for various device types before and
after optimizations have been made

Device type Page weight before Page weight after Reduction
Mobile (high DPI) 526 KB 118 KB 77.5%
Mobile 378 KB 87.4 KB 76.8%
Desktop (high DPI) 536 KB 121 KB 77.4%

Desktop 383 KB 89.5 KB 76.6%

1.6

Summary 21

Before optimization

After optimization

g

Load times

]]]
Mobile Mobile Desktop Desktop
(high DPI) (high DPI)

Figure 1.16 Load times of the client’s website on the Regular 3G throttling profile
before and after all optimizations were made. Load times improve approximately
70% for all visitors on all devices.

Of course, you’ll want to see how this affects load times from end to end. Figure 1.16
compares load times before and after optimizations were made.

Your optimization efforts have improved load times for the client’s website by
nearly 70% for all users, regardless of which device they may be using to visit the site.
As you can see, even basic performance-tuning techniques can be effective and can
improve the user experience in a measurable way. We’ve only scratched the surface,
and more-advanced tips and tricks reside in the chapters ahead.

Summary
You began this chapter by learning some high-level concepts indicating why web per-
formance is important. You then set to work by improving a client’s website through
the following techniques:
= Analyzing the weight of a page by using the Developer Tools in Google Chrome
= Reducing the size of text-based assets by a process called minification, which
strips unnecessary whitespace from assets without affecting their function
= Further reducing the size of these text assets through server compression

= Measuring the effectiveness of optimizing images

You’re well on your way but you have far more to learn. You’ll start in the next chapter
by learning how to use the developer tools in various browsers to assess performance.

WEB DEVELOPMENT

Web Performance v acrion
Jeremy L. Waqner

ifty features, hip design, and clever marketing are great,
N but your website will flop if visitors think it’s slow. Net-

work conditions can be unpredictable, and with today’s
sites being bigger than ever, you need to set yourself apart
from the competition by focusing on speed. Achieving a high
level of performance is a combination of front-end architec-
ture choices, best practices, and some clever sleight-of-hand.

This book will demystify all these topics for you.

Web Performance in Action is your guide to making fast web-
sites. Packed with “Aha!” moments and critical details, this
book teaches you how to create performant websites the right
way. You'll master optimal rendering techniques, tips for
decreasing your site’s footprint, and technologies like HTTP/2
that take your website’s speed from merely adequate to seri-
ously fast. Along the way, you'll learn how to create an auto-
mated workflow to accomplish common optimization tasks
and speed up development in the process.

What's Inside

e Foolproof performance-boosting techniques
* Optimizing images and fonts

e HTTP/2 and how it affects your optimization workflow

This book assumes that you're familiar with HTML, CSS, and
JavaScript. Many examples make use of Git and Node.js.

Jeremy Wagner is a professional front-end web developer with
over ten years of experience.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit
www.manning.com/books/web-performance-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

gee €
SEE INS

¢C An invaluable, accessible
reference for the modern
web developer.??

—From the Foreword by
Ethan Marcotte, author of
Responsive Web Design

¢CAn excellent and practical
guide through the forest of
web performance issues.??

—Alexey Galiullin, Global Orange

¢¢By far the most valuable
book I have read on web
performance. A true
time-saver for you and
your users.”?
—Kevin Liao, Sotheby’s

CCA thorough compendium
of tools and techniques
for improving web
performance.??

—Noreen Dertinger
Dertinger Informatics

ISBN 13: 978-1-b1729-377-1
BN-10: 1-k1729-377-b

“ H ““| Il

www.manning.com/books/web-performance-in-action

